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ABSTRACT

Under the principles of probabilistic seismic hazard analysis (PSHA), technically
defensible models of fault behavior must be included in the analysis. The model most
commonly used in PSHA for earthquake occurrence, the Poisson model, cannot directly
accommodate time dependence. Nevertheless, time-dependent earthquake recurrence has
been reported at paleoseismic sites in California and elsewhere, and a general model of
time dependence can be anticipated under a mechanical model of secular tectonic fault
loading with quasi-periodic failure in earthquakes. For faults with a long paleoseismic
record and a documented most recent event, time dependence can be incorporated into
PSHA using other recurrence models. We present here a new method for incorporating
time dependence when little more than the fault slip rate is known about the fault of
interest. We call the estimate the Equivalent Poisson Ratio (EPR), since it is not an
absolute estimate of time-dependent hazard, but rather a ratio applied to a time-
independent hazard estimate developed by conventional PSHA methodologies.

Fault slip rate can be used with bounds on potential displacement per event to develop a
range of possible earthquake recurrence intervals. Each recurrence interval is associated
with a conditional survival function that describes the probability of an open interval of
any given length since the last fault-resetting event. A crafted likelihood approach based
on the joint probability of the recurrence interval and time since the most recent event
leads to an EPR estimate for any given coefficient of variation (CV) of the time-
dependent model functional form. Weighting by likelihood across values of CV leads to
the final EPR estimates. We express them in terms of a three-point cumulative
distribution approximation, and use the branch-weighted-mean EPR where a single EPR
value is desired. EPR estimates depend on the ratio of the open time since the most recent
event (tMRE) to the recurrence interval, and tend to 1.0 as the ratio approaches 0.

We illustrate the method with nominal values from two faults near the coast of Central
California that contribute to the site-specific seismic source characterization at the Diablo
Canyon Power Plant (DCPP). The branch-weighted-mean EPR estimate for the Hosgri
fault using the lognormal recurrence distribution and a minimum tMRE = 242 years is
1.24 (1.09-1.33) for a fault slip rate of 1.7 (0.7-2.7) mm/yr, where the range reflects the
8.5% and 91.5% values of a continuous distribution. Using the same tMRE and
recurrence model, a nominal slip rate of 0.26 (0.18-0.36) mm/yr for the Los Osos fault
yields an EPR estimate of 1.03 (1.02-1.04), which, considering the uncertainties
involved, could be rounded to 1.0. Although the branch-weighted mean is essentially 1.0,
three-point approximation points, 0.26, 1.16, and 1.54, can be carried forward, if desired
into a logic tree with their corresponding weights of 0.25, 0.50, and 0.25. The upper limit
physically corresponds to the weight of evidence that the fault is due or past due relative
to its average.

We also show how even limiting evidence about the MRE from paleoseismic
investigation can significantly increase the mean EPR. Although this methodology was
developed in the course of the seismic source characterization (SSC) for the DCPP, the
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results presented here should be considered only representative. Final values and
implementation details are provided in the main SSC documentation.

H.1.0 INTRODUCTION

If ground-rupturing earthquakes occur randomly in time, their occurrence can be modeled
as a Poisson process. If earthquakes instead release energy stored during a period of
tectonic loading, they will be more likely to occur when the energy storage is high and
less likely when it is low, including in the early time following an earthquake.

The model of elastic loading of faults by secular processes and sudden release in
earthquakes was first articulated by Reid (1911). This model has given rise to end-
member models for predicting earthquake timing and size. The time-predictable model
(Shimazaki and Nakata, 1980) predicts failure time based on the slip in the previous
event and a model of fixed fault strength. The alternative slip-predictable model makes
no claim about when an earthquake will occur, but predicts the slip amount (~earthquake
size) as a function of time since the previous event. Neither model has proven entirely
satisfactory (e.g., Weldon et al., 2004), but in environments where secular loading occurs,
release in occasional, perhaps temporally irregular, earthquakes is now generally
accepted.

The concept of time-dependent earthquake occurrence in probabilistic seismic hazard
analysis (PSHA) applies to fault-specific seismic sources. The inter-event times for
earthquakes distributed randomly in time as described by a Poisson model follow an
exponential distribution. The exponential model for earthquake recurrence is attractive
because it requires only one parameter, the mean inter-event time. Modeling earthquakes
as being random in time is also attractive when little is known about inter-event times
because the use of more complicated models with two or more parameters cannot be
rigorously defended by their improved fit to data (Akaike, 1974). Another reason for the
use of the Poisson (random in time) model is that regulatory design criteria are expressed
as target annual frequencies of exceedance (e.g., 10*) without consideration of any time
dependence. Given the prominence of the Poisson model of earthquake occurrence in
PSHA, most computer codes for hazard estimation have, until recently, assumed the
Poisson model. Recognition that earthquake occurrence may be time dependent creates
interest in ways that current PSHA computer codes can be used and still model time-
dependent sources. Equivalent Poisson Ratio estimates are the relative adjustments to
time-independent rupture rates necessary to produce the equivalent time-dependent
rupture rate.

Relying solely on the Poisson model of earthquake occurrence runs counter to another
principle of PSHA: namely, that the price for lack of information is increased uncertainty.
In this case, the lack of information about earthquake recurrence does not automatically
justify use of the simplest available recurrence model. If an earth model of secular
tectonic loading is considered credible, then a time-dependent recurrence model must
also be part of the uncertainty in the hazard assessment.
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We show in this paper that well-posed estimates of relative time-dependent seismic
hazard can be developed from an estimate of fault slip rate and limited information about
the time since the most recent event. We call the relative hazard estimate the Equivalent
Poisson Ratio (EPR) because it is expressed as a ratio of the time-dependent to the time-
independent hazard estimate. The EPR formulation can be applied in hazard codes as a
constant that multiplies the time-independent hazard. Unknown parameters that affect the
hazard estimate such as earthquake displacement per event (DPE) and the coefficient of
variation (CV) of recurrence are included as geologically bounded ranges. The resulting
estimates can be tested for robustness to alternative input parameters. We find that time-
dependent EPR estimates are stable in the presence of reasonable alternative values for
the contributing constraints. The method for estimating EPRs is developed in somewhat
general terms, but where illustrations help the discussion, examples are drawn from a
site-specific application on the central coast of California, the seismic hazard estimation
at the Diablo Canyon Power Plant.

H.2.0 RECURRENCE MODELS

We will use f(t; 6) to refer to the probability density function (PDF) with distribution
parameters @ for intervals between ground-rupturing earthquakes, and F(t; 6) for the
corresponding cumulative distribution function (CDF). Reference to & may be dropped
when the role of the parameters is clear from the context. The conditional probability CP
of an earthquake for a forecast period Tt starting at time t is then

F(Tp+t)-F(O)
1-F(t)

On Figure H-1, CP(t; Ty, ) is the ratio of the area under the PDF from t to t + T¢ (dark
gray) divided by the total area to the right of t (sum of the shaded areas). Two examples
are shown on Figure H-1: the upper for an exponential distribution, and the lower for a
lognormal distribution. The long-term mean (LTM) is the same for both distributions.
The predictions of the two models differ most strongly at times that are short compared to
the LTM.

If earthquakes are distributed randomly in time, the intervals between events have an
exponential distribution (Figure H-1a) with a single parameter 8= A, where A is the LTM
rate of earthquake recurrence:

CP(t; T;,0) = (H-1)

F(t; 1) = 2e™H (H-2)
with cumulative distribution
F(t; )=1—e™H (H-3)

On Figure H-1, A = 1.0. From Equation H-1 the conditional probability of an event in the
next Tt years is then

[e—/lt _ e—/l(t+Tf)]/

gt =1— ™7 ~ 2Ty (H-4)
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where the final approximation applies when Ts is small compared to the recurrence
interval. Thus, if the occurrence of earthquakes is described by a Poisson process, then
the conditional probability of an event in some future time is independent of time and
normally approximately equal to the annual rate times the forecast length Tr,.

For time-dependent recurrence models, the conditional probability depends on the time
since the fault was reset. As an example, the lognormal probability distribution (Figure
H-1b) characterizes variables whose logarithms are normally distributed with parameters
0= {u, o} where x is the mean log of interval lengths and &2 is the variance:

1 —n®-p?
fLN(t; Ml O-) = to_me 202 (H-S)
The CDF of the lognormal distribution is
1,1 In(t)-
Fun(t;1,0) = 2 + 2 erf (“\Fz—)a“) (H-6)

where erf(.) is the error function. Substituting Fun(t; 4 0) into Equation (H-1) would
confirm that the T¢period conditional probability is time dependent.

The hazard function for continuous distribution functions expresses the instantaneous rate
of an event as a function of time:
f(6)

H(t;0) = PR (H-7)
Comparing the hazard functions for the exponential and lognormal distributions brings
out a fundamental difference between the two. For any value of t, including as t
approaches 0, H(t) for the exponential distribution (Equation H-3) equals 4. Applied to
earthquake recurrence, this means that the hazard from a ground-rupturing earthquake is
the same immediately after one occurs as it was at any time before it. In contrast, fun(t)
and Fyn(t) approach 0 as ¢ — 0, and Hin(t) = 0. Thus, under the lognormal model, the
hazard is small immediately after a large event.

Lognormal parameters x and o are related to the LTM recurrence rate 4 by

1/ =exp(u+ "2/2) (H-8)

The arithmetic CV for the lognormal distribution is independent of x and given by

CV=+e? -1 (H-9)

If we know A and o, we can form a ratio of conditional probabilities between time-
dependent and exponential models that share a common long-term mean (Figure H-2). As
anticipated in our examination of H(t), the conditional probability ratio (CPR) is zero just
after the previous earthquake, increases to 1.0 when the time-dependent and time-
independent forecasts are equal, and reaches a maximum that depends on the lognormal
width parameter before declining.
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After introducing two other time-dependent distributions for earthquake recurrence, we
will focus on how to estimate hazard ratios when information about recurrence
parameters and the time since the most recent event is limited.

The Brownian Passage Time (BPT) model of earthquake recurrence (Ellsworth et al.,
1999; Matthews et al., 2002; WGCEP, 2003) is an application of the inverse Gaussian
distribution. It models recurrence in terms of a secular loading rate, around which are
random Gaussian deviations representing local strain increases or decreases. The BPT
PDF can be formulated in terms of two variables, # and a:

1

f(t; n,a) = ( ! )E exp (M) (H-10)

2ma?t3 2a2nt

Location parameter # characterizes the secular loading rate. Numerically, # is the
arithmetic mean of the interval lengths and equal to the reciprocal of A from the
exponential distribution. Parameter « is numerically the CV, although Matthews et al.
(2002) prefer the term aperiodicity on mathematical grounds. The BPT model can have a
wider variety of shapes than the lognormal distribution, but the two are similar for
parameters likely to come from paleoseismic data.

We also consider the Weibull distribution. The Weibull distribution is sometimes applied
to forecast probabilities of a large earthquake because of its more common use in
modeling time-to-failure rates in mechanical or engineered systems. The PDF for Weibull
random variablesand t >0 is

f(t; v, k) = %(E)k_l exp <— (%)k) (H-11)

v

Parameter v governs the width of the distribution. Comparison of the Weibull cumulative
distribution

k
F(t; v,k) = 1-exp(~(3)) (H-12)

to Equation (H-3) shows that parameter k controls the shape of the Weibull distribution
relative to an exponential. For k = 1 the Weibull distribution reduces to the exponential
distribution. For k > 0, the failure rate increases monotonically with time.

H.3.0 INCLUDING UNCERTAINTY IN CONDITIONAL
PROBABILITY RATIOS

Our strategy to generalize CPRs begins with knowledge of the slip rate on the fault for
which we seek the hazard. Values for slip rate typically are developed through geologic
investigations. Initially, we consider slip rate r, in mm/yr, without uncertainties, but will
return to include uncertainties after the basic method is set out.

We parlay the fault slip rate into a set of mean recurrence rates by dividing the slip rate
into a set of candidate mean slips per event D. For estimating time dependence, it is the
future slip that matters. Since this is unknown, we instead propose a distribution of D
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consistent with the state of knowledge from the fault of interest, or from similar faults.
Two such example distributions are shown on Figure H-3.

The two curves on Figure H-3 model DPE on two types of fault. The broader distribution
(solid line) is designed to apply to moderate strike-slip faults such as the Hosgri fault off
the coast of Central California. The distribution conveys a relative agnosticism among
choices in DPE from 1.5 meter (m) to 3.0 meters per event (m/event), with tolerance for
values as small as 0.5 m and non-zero probabilities up to 5.5 m/event. How, one might
ask, can bounds on DPE be offered? One approach is to look at previous ground ruptures
in the region. In California, for example, the largest measured average slips per event on
the San Andreas fault are 4.45 m/event and 4.3 m/event for the 1857 and 1906
earthquakes, respectively (Biasi et al., 2013). Limited available slip-per-event data from
previous such events (Zielke et al., 2010) suggest similar, but not likely larger, events in
the past. Using an upper bound of 5.5 m/event reflects the possibility that not all is known
about California’s strike-slip faults. The second curve on Figure H-3 (dashed) was
constructed for application to smaller faults. It expresses some geological confidence,
perhaps from paleoseismic investigations or fault-length scaling, that slips of 1.0-2.5 m
average per event are most likely, but that a range of 0.5-4.0 m/event are at least
minimally credible for the fault. The actual distributions are parametric inputs, so it is
straightforward to evaluate whether any choices are strongly influential. In practice, EPR
results are not strongly sensitive to reasonable choices for the shape of the DPE set.

We calculate LTM earthquake recurrence times by dividing DPE by the fault slip rate.
The probabilities of each possible LTM value are copied from the DPE distribution. For
each LTM value, 1/LTM = A can be used in the time independent Poisson distribution
and the LTM itself is the basis for the location parameter of time-dependent distributions.

The width parameter of the time-dependent PDF governs how regularly or irregularly
earthquakes occur on the fault. As with the LTM, a precise estimate is not available, but
an informed range can be offered. Figure H-4 shows two distributions that express
somewhat different views of the CV distribution. The solid line is patterned after the
range observed at high-quality paleoseismic sites on California strike-slip faults. It
expresses greatest confidence in CV values between 0.5 and 0.8, and less confidence in
very regular (CV < 0.5) or more random recurrence. This range bounds 10 of 11 well
characterized California paleoseismic records (Biasi, 2013; Weldon et al., 2013). By
emphasizing this range, we express some confidence that the Hosgri fault in California
would fall in a similar range, but recognize also that more or less regular recurrence is
possible. The second distribution on Figure H-4 (dashed) represents a less clear range
designed for dip slip faults. Mechanically, dip slip faults do not have as strong a
continuity of motion requirement as strike-slip faults. Unfortunately at present dip slip
faults are not as well characterized as strike slip faults. Consequently a wider range of CV
values is considered credible; the effect is to add uncertainty in the CV range. As with the
DPE distributions, we will find that EPR estimates do not strongly depend on the CV
distribution.
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The conditional probability of a future event in a time-dependent model depends on the
time since the most recent event (tMRE). The most recent event for hazard purposes is
defined as the event that resets the clock for occurrence of ground rupturing earthquakes.
One of two types of tMRE constraints are available for most faults. The first is an
inequality constraint, tMRE > Tmin, that sets some minimum time in the past after which
no resetting event is believed to have occurred. In most places a minimum tMRE of some
decades can be given based on instrumental records (Felzer, 2013). In much of southern
California, records from Spanish missions allow an estimate of tMRE > 200 years
(Toppozada et al., 1981). A pre-historic minimum tMRE might be developed from a
paleoseismic record where the most recent ground rupture is dated but the magnitude of
the event, and thus the time of fault resetting is uncertain. The second type of tMRE
constraint is an equality relation, tMRE = Teq. Historical events in California in this
category include the 1857 Fort Tejon and 1906 San Francisco earthquakes. An equality
constraint could also apply if paleoseismic data were of such good resolution and strike
extent that a single large event is the only credible explanation. Such an event near 1720
A.D. seems required to explain paleoseismic evidence on the southern San Andreas fault
(Sieh 1986; Seitz and Williams, 2007; Philibosian et al., 2011; Haaker et al., 2013).

H.4.0 ESTIMATING EQUIVALENT POISSON RATIOS

With the necessary components in hand, we now consider the process of estimating
EPRs. We use a lognormal distribution in the explanation (Figure H-5), planning to
include the BPT and Weibull distributions afterward. In outline, the process is in two
parts. The first part is to generalize conditional probability calculations to cover the full
range of possible recurrence intervals and possible times since the most recent event for
each considered CV value. We use the term “conditional probability ratio” to refer to
ratios made without reference to the weight or probability given to the input values. The
EPR is extracted from the CPR by weighting inputs such as the DPE and minimum time
since the most recent event. In the realm of seismic source characterization, the EPR thus
includes judgments and weights on input values, while the CPR covers a range of input
values without reference to their credibility. The range of possible CV values is included
by treating the CV as an epistemic unknown (Figure H-4). EPR estimates for a given CV
are combined in the end according to CV weights. Fault slip rate is constant within
individual EPR estimates, and slip rate uncertainty is included by combining EPR
estimates using slip rate weights as an epistemic uncertainty.

Figure H-5 summarizes the calculations leading to conditional probability ratios for three
assumed values of LTM, a CV = 0.6, and a fault slip rate of 1.7 mm/yr, the current best
estimate for the Hosgri fault. LTM values of 500, 1000, and 2,000 years were used on
Figure H-5. These LTM values correspond to 0.85, 1.7, and 3.4 meter (m) average DPE
values, respectively — similar to the expected range on many faults in California.
Lognormal PDFs for the three LTM values are shown on Figure H-5a. In Figure H-5b we
show the survivor functions S(t) = 1-F(t). S(t) is also known as the complementary
cumulative distribution. The survivor function for a given LTM describes how probable
any given wait time would be since the MRE. For example, for an LTM of 1,000 years,
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the median recurrence interval would be approximately 800 years, and the wait time
should be <2,550 years 97.5% of the time (circle symbol). The 97.5% limit is
proportional to LTM; for CV = 0.6, tMRE will be less than 2.55 x LTM. The ratio
increases with CV, corresponding to increasing weight in the right tail of the PDF. For
each LTM, conditional probabilities of ground rupturing earthquakes can be calculated
across the range of times since the MRE (Figure H-5c). Numerically, 30-year forecasts
have been used. For the renewal-based earthquake recurrence models, there is a range of
tMRE and LTM in which time-dependent conditional probabilities are smaller than
corresponding time-independent estimates. However, for most of the likely range of
tMRE, the CPR is larger than 1.0, indicating that the time-dependent hazard is greater
than the corresponding Poisson rate. This range in hazard is the origin of the EPR. The
ratio (Figure H-5d) peaks near the mode of the lognormal PDF, then declines with
increasing tMRE. Plots on Figure H-5d end at the upper 97.5% point of their respective
survivor functions (circles, Figure H-5b) to make the point that greater values of tMRE
would be increasingly inconsistent the respective assumed values of LTM and CV. In
addition to being internally consistent, this approach of focusing attention on the probable
range of tMRE minimizes the impact of differences in asymptotic behavior between the
lognormal, Brownian Passage Time, and Weibull recurrence distribution models.

The effect of constraints on tMRE > Tnmin can be anticipated on Figures H-5¢ and H-5d.
Suppose, for example, that tMRE < 500 years could be eliminated by a paleoseismic
constraint. Then even without definite information on the true value of tMRE or the
LTM, any weighted combination of the remaining portions of the CPRs on Figure H-5d
would lead to an EPR in the range of 1.6-1.7 for this CV.

The conditional probability ratio lines on Figure H-5d can be generalized into a surface
using the complete range of tMRE and LTM (Figure H-6). A grid is constructed by
dividing ranges of LTM and tMRE into small increments ALTM and AtMRE,
respectively. An increment of 20 years was used for both. Each of the lines on Figure
H-5d becomes a row on Figure H-6, except for not being truncated at its 97.5% limit. The
peak of the conditional probability ratio surface trends linearly with LTM on Figure H-6
because for a given CV, the shapes of the underlying recurrence PDFs (Figure H-5a) are
self-similar. The CPR surface on Figure H-6 is a mathematical construct that does not
consider the likelihood of any particular values of LTM and tMRE.

We now require a means to associate weights with the gridded CPR values on Figure
H-6. Conceptually this can b done by dividing the CPR into small discrete ranges, then
for each, summing the weight associated with that range. We form a joint probability
surface W on the same LTM-tMRE grid. The LTM probability distribution comes from
the input displacement-per-event distribution and a slip rate of 1.7 mm/yr. The
probabilities for individual discrete values LTM; are found by finely resampling the LTM
PDF, then renormalizing to give a unit total probability. For each value LTM; there is a
row with the corresponding survivor function S(tMRE) = 1-F(t). The probability for the
unknown time since the last event, given the recurrence rate and CV, is given by the
survivor function. The discretized S(tMRE) is normalized to sum to unit area so it can be
applied to the grid. Numerically, values on the joint probability grid are given by:
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W;; = p(LTM)S(¢MRE;|LTM;) (H-13)

Each row in the weighting grid is a complete PDF conditioned on LTM = LTM;.
Summing Wij; over j yields LTM;, and the sum over LTM; = 1 by construction. The
resulting joint probability surface for CV=0.6 is concentrated above the diagonal LTM =
tMRE because of the shape of S(t). Probabilities decline with largest allowed values of
LTM because they are associated with declining probabilities of the largest allowed
displacements per event (Figure H-2). In Figure H-7 the joint probability surface has been
normalized by its maximum value so that the contours numerically reflect relative weight
on a scale from 0 to 1.

Weighting of the CPR surface (Figure H-6) is applied in two steps. First, the CPR is
sorted from largest to smallest in an equivalent one-dimensional array, CPR(K), where K
is the sort order, and k indexes K. The same “sort” order K is applied to W. The
cumulative sum of W(K) is denoted as F(W). F(W(k)) gives the weight (probability) that
the weighted CPR is equal or greater than CPR(K). Pairs of CPR(K) vs. F(k) are plotted on
Figure H-8. Because weights are now applied to the CPR, we call Figure H-8 the
equivalent Poisson ratio for this CV. In subsequent plots we will summarize EPR values
in terms of a three-point distribution (Miller and Rice, 1983) suitable for use in a logic
tree. Stars on Figure H-8 mark the 91.5%, 50%, and 8.5% distribution values. EPR
values for these points are multiplied by [0.25, 0.50, 0.25], respectively, to obtain the
weighted mean EPR value for this CV.

In explaining the joint LTM-tMRE surface, we used tMRE > Tmin = 0. In effect this
means that a ground-rupturing earthquake could have occurred last year. Focusing for the
moment on the central California coast, older Tmin Values might be considered. The
inauguration of the Southern California Seismic Network in 1932 would lead to Tmin > 82
years. The founding of San Luis Obispo as a city, and establishment of a newspaper, and
road and rail connections in the 1870s would give a fairly secure Tmin = 144 years. Felzer
(2013) estimates the magnitude of completeness for the central California coastal region
since this time to be M > 6.5. Finally, the Spanish mission record at San Luis Obispo
starts in 1772 and appears to be fairly complete. This would allow some confidence for
large events in Tmin = 242 years. We implement the constraint tMRE > Tmin by removing
the range t < Tmin in S(t) and renormalizing. Mathematically, S(t) is replaced by
S(t|t>Tmin). EPR values for these four cases and a distribution CV of 0.6 are shown on
Figure H-9. Dashed lines on Figure H-9 are weighted mean EPRs, matched to the curves
by color and symbol type. This figure shows that even weak historical limits on tMRE
directly influence the CPR estimate. tMRE constraints remove the early time portion of
the CPR where the ratio is less than 1.0 and the time-dependent hazard is smaller than the
time-independent. The remaining range is thus concentrated in CPR ratios greater than 1,
which raises the net weighted EPR value. The effect of Tmin diminishes as it becomes a
smaller fraction of the mean recurrence time.

If the date of the relevant MRE is known, the equality constraint tMRE = Teqk can be
applied. With the equality constraint, there is no weighting to be done across the range of
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tMRE, and W for calculating the EPR reduces to the weights in a single column at tMRE
= Teqk.

We plot weighted mean EPR values for all considered values of CV and three fault slip
rates on Figure H-10. In general EPR estimates will vary with CV. In this case EPR
values are larger for small CV values because their recurrence PDFs are narrower and
concentrate more weight in the forecast period (e.g., Figure H-5d).

To arrive at final estimates of EPR for the assumed slip rate, we weight the three-point
values of EPR estimates (e.g., Figure H-8) by the CV weighting shown on Figure H-4.
Figure H-11 provides final values for the three fault slip rates, with their corresponding
three-point values. As shown on Figure H-11, EPR estimates are stable, varying in a
predictable relationship to fault slip rate. Upper branch (91.5%) values are consistently
around 1.85, corresponding to an interpretation that rupture is “due”. Physically, the fault
has accumulated at least 1.7 mm/yr*242 yr = 0.41 m of slip since the latest allowed
MRE. High estimates of EPR gather weight from smaller allowed values of CV and from
the smaller range of allowed DPE for which rupture would be more imminent. The
available data allow these combinations, so from a PSHA standpoint they must be part of
the range of the EPR estimate. At the same time, to increase the EPR much further would
require affirmative data for a lower range of CV. On the small end, with 8.5% weight, the
EPR could be as low as 0.16 to 0.58. These values draw most of their weight from
combinations of large DPE and large CV. Large DPEs correspond to long recurrence
intervals and a smaller ratio of Tmin to the recurrence interval. Branch-weighted-mean
EPR values using the method of Miller and Rice (1983) are calculated using
0.25*EPRsgs% + 0.50*EPRsoy% + 0.25*EPRo15%. We obtain branch-weighted-mean EPR
estimates for the Hosgri fault of 1.09, 1.24, and 1.33 for slip rates of 0.7, 1.7, and 2.7
mm/yr, respectively (Table H-1).

Table H-1. Moderate Slip Rate Fault Three-Point Distribution and Branch-
Weighted Mean (BWM) EPR for Three Recurrence Distributions and Several
Values of tMRE

Fault PDF F?l\ltpe tMRE 8.5% 50% 91.5% BWM
Hosgri LN 1.7 242 0.39 1.35 1.85 1.24
Hosgri LN 0.7 242 0.15 1.18 1.86 1.09
Hosgri LN 2.7 242 0.58 1.46 1.84 1.33
Hosgri LN 1.7 0 0.04 1.05 1.83 0.99
Hosgri LN 1.7 82 0.15 1.16 1.84 1.08
Hosgri LN 1.7 144 0.24 1.24 1.84 1.14
Hosgri LN 0.7 144 0.10 1.12 1.86 1.05
Hosgri LN 2.7 144 0.38 1.32 1.82 1.21
Hosgri BPT 1.7 242 0.42 1.35 1.81 1.23
Hosgri WBL 1.7 242 0.59 1.08 1.92 1.17
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EPR estimates for low slip-rate faults follow the above outline. Table H-2 gives EPR
results for a nominal slip-rate estimate set of the Los Osos fault, which is thought to slip
at a rate an order of magnitude slower than the Hosgri fault. Estimates are given for two
values of minimum tMRE. The main difference for low slip-rate faults is that it takes
more time to accumulate enough slip for a moderate or large earthquake. The ratio of
tMRE to the recurrence interval determines the influence of the open interval. This ratio
is small for low slip rate faults, causing the branch-weighted-mean EPR values to be only
slightly greater than 1.0. In Table H-1, the extreme case of tMRE = 0 is thus an end-
member, and within the resolution, 1.0.

We can use our EPR estimation tools to explore the value of paleoseismic data to the
EPR estimate. To do this we adopt the nominal slip rate of 0.26 mm/yr, the same as for
the Los Osos fault, but use a hypothetical minimum tMRE of 2,000 years. Under this
scenario, the branch-weighted-mean EPR increases to 1.21 (Table H-2), or about a 20%
increase in the mean time-dependent hazard compared to an EPR estimate with no
meaningful constraint on the date of the MRE.

Table H-2. Low Slip Rate Fault Three-Point Distribution and Branch-Weighted
Mean (BWM) EPR for Two Values of tMRE

Fault PDF F?gtpe tMRE 8.5% 50% 91.5% BWM
Los Osos LN 0.26 242 0.26 1.16 1.54 1.03
Los Osos LN 0.18 242 0.24 1.16 1.54 1.02
Los Osos LN 0.36 242 0.29 1.17 1.53 1.04
Los Osos LN 0.26 144 0.21 1.15 1.54 1.01
Los Osos LN 0.18 144 0.20 1.15 1.54 1.01
Los Osos LN 0.36 144 0.23 1.15 1.53 1.02
Hypothetical LN 0.26 2000 0.67 1.32 1.54 1.21

H.5.0 PARAMETRIC EVALUATION

In this section we explore the robustness of EPR estimates to the choice of recurrence
functional form and the difference between inequality and equality constraints on tMRE.

On Figure H-12 we compare survivor functions and EPR given CV for the lognormal,
BPT, and Weibull distributions. We use a fault slip rate at 1.7 mm/yr, an LTM value of
700 years, and a range of CV values. Lognormal and BPT models are most similar to one
another (Figure H-12). For both models and most CV values, the survivor functions near
S(t) = 1 decrease slowly at first, corresponding to low probabilities of an event just after
the MRE. In contrast the Weibull S(t) function decreases immediately, especially for
smaller CV values. When tMRE < Tnin is removed, so is the early low probability portion
of the Weibull distributions. As a result, Weibull EPR values reach a factor of two or
more larger values than either of the other two models. The monotonic increase in hazard
with tMRE for the Weibull distribution can also be seen.
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At first it might appear that the increase in conditional probability values with tMRE,
especially for the Weibull distribution and small CV values (Figure H-12c), could
destabilize the EPR estimate. However, weighting by the CV distribution (Figure H-13)
reduces this tendency. Instead of diverging, the net branch-weighted-mean EPR estimates
(dotted lines on Figure H-13) are similar to those for the other recurrence models.

On Figure H-14 values of CV-weighted EPR for a slip rate of 1.7 mm/yr and Tmin =242
years are shown for the three time-dependent recurrence models considered. The
lognormal points are repeated from Figure H-11. The BPT estimates are seen to be very
close to the lognormal values. Results from the Weibull distribution differ from the other
two, being about 20% lower at the mid-point, but slightly higher on both ends. If the
Miller and Rice (1983) weights of [0.25, 0.50, 0.25] are applied to the 8.5%, 50%, and
91.5% points, weighted mean EPR estimates of 1.24, 1.23, and 1.17 are obtained for the
lognormal, BPT, and Weibull models, respectively. These values can be interpreted as the
mean time-dependent hazard increase. Most of the mean hazard increase comes from the
information Tmin = 242 years.

Finally, the large earthquake on the San Andreas fault in 1857 provides an opportunity to
compare results of the constraint tMRE > Tmin to tMRE = Tegk = 157 years. The 1857

M 7.8 event ruptured the fault from Parkfield southeast to beyond Wrightwood (Zielke et
al., 2010). The magnitude and length of this rupture makes it a strong candidate as a
resetting event, and since 1857 there have been no significant ground ruptures on the
fault. The San Andreas fault slips at a rate of 30.3 mm/yr on the Cholame section at its
nearest approach to DCPP, for a total of almost 4.8 m of slip since 1857. Figure H-15
compares three-point distributions for constraint tMRE > Trin and tMRE = Tegk. The two
estimates are similar, with branch-weighted mean values of 1.28 vs. 1.34, respectively.
Since the fault is at or somewhat beyond the average recurrence interval, the equality
constraint preferentially focuses near maxima of the conditional probability surface. The
inequality constraint tMRE > Tnin includes more of the declining CPR values at larger
tMRE (e.g., the right side of Figure H-6). Since the equality constraint better represents
the time dependence of the San Andreas fault, we use it to weight the fault’s sources. For
cases where the choice is less clear, some weighted combination of the two results may
be preferred.

H.6.0 DISCUSSION

Our approach for estimating EPR depends on the estimate of fault slip rate. In practice,
fault slip rates are uncertain. In principle, slip rate uncertainties might be propagated
directly into uncertainties in LTM and tMRE probabilities. This would, however,
introduce an additional, potentially severe, layer of complexity. The simpler approach
that we have taken is to link EPR estimates directly to the epistemic range of slip rate
values and weights from geologic studies. In the present case, the Hosgri fault slip rate is
expressed in a three-point distribution with rates of 0.7, 1.7, and 2.7 mm/yr and weights
25%, 50%, 25%, respectively. These weights can be applied consistently to their
respective EPR estimates because the slip rate and EPR estimates are causally linked.
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Our approach to estimating EPRs uses units of real years. We chose this approach to keep
the discussion more familiar to practicing geoscientists. Individually, components of the
EPR estimation process might be normalized, such as expressing the LTM in terms of a
range around some mean value (e.g., Figure H-2; see also Matthews et al., 2002;
WGCEP, 2008). However, when the normalized LTM is used to weight probabilities of
time since the most recent event, the joint probability surfaces (Figure H-7) become
difficult to interpret directly, since Tmin is a different fraction of LTM on every row. The
forecast window would also have to be scaled.

Our estimates of EPR are conditioned on the shape of the recurrence distribution and rely
on the linkage of LTM to plausible values of tMRE (e.g., Figure H-5b) through the
survivor function. Combinations of LTM with tMRE greater than many multiples of
LTM are strongly down-weighted for lognormal, BPT, and Weibull functional forms.
One might ask, what if tMRE really is many multiples of the LTM? In such a case we
would conclude that the data have impeached the condition on model functional form,
and that an alternative recurrence model must be sought. Nothing in the method would
prevent, for example, use of a strongly bi-modal event recurrence model.

Weighting the range of tMRE values by the corresponding survivor function S(t|LTM)
addresses a potential concern sometimes raised about the differences in asymptotic
hazard between the lognormal and BPT models (e.g., Matthews et al., 2002). The
lognormal model hazard function f(t)/[1-F(t)] declines for t >>LTM, while the BPT
model asymptotically approaches the Poisson rate. However, when we weight either
distribution by its survivor function (Figure H-5b), the contribution of tMRE >>LTM
declines to unimportance. This property of the survivor function is an important part of
why EPR estimates are relatively insensitive to the choice of recurrence model functional
form.

We have not attempted to present EPR calculations for every permutation of knowledge
that might be developed in a site-specific seismic source characterization. For example,
we illustrate the consequences of different discrete values of Tmin, With the intention that
the choices be adopted in a logic tree format with individual weights. This corresponds
better with the interpretation of Tmin as an epistemic uncertainty, but the method could be
extended to a continuum estimate of Tmin If data became available to warrant the effort.
Similarly, in principle, if one knew the magnitude-frequency distribution (MFD) on the
fault of interest, that information could be used to shape the input DPE profile. In
practice, MFDs for faults are rarely well known. In addition, the new appreciation of
connectivity among faults (Field et al., 2013) has cast doubt on the classic understanding
of fault MFDs. Displacement per event distributions might also be shaped by geologic
observations. Hecker et al. (2013) report a relatively small range of displacements around
a mean from repeated observations of displacements at a point. In their data, the observed
range is typically on the order of %2 to 2x of mean displacement. However, this range is
not dissimilar to the distributions we have used (e.g., Figure H-5). In any event we could
not use their formulation without assuming a mean DPE, and any input DPE distribution
peaked around a mean would effectively constrain the EPR by an unknown input.
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Our approach to EPR involves a number of steps that might be criticized for want of
rigorous inputs. Conspicuous opportunities include the a priori weights given to
individual values of the DPE and CV distributions. Two replies can be offered. First, it is
clear that some range of displacements per event and CV values must exist; the argument
must be over how they are distributed. If a distribution is not known, but bounds can be
suggested, then the least informative strategy is a uniform distribution on the bounds.
Geologically, however, equal probabilities across the full range of world-wide DPE
measurements from ruptures in continental crust (e.g., Wesnousky, 2008; Biasi et al.,
2013) would be difficult to defend. At the same time there will be a middle range of DPE
where being prescriptive about the relative weightings requires more information than is
available. In this range, the DPE will be flat. This line of reasoning leads to DPE
distributions like those we have used here. Our CV distributions follow the same logic.
Figures 10 and 13 are provided in part so that the reader can assess the shifts in CV
weight that would be needed to materially change the weighted EPR estimates. As with
the DPE distribution, to depart from a bounded uniform distribution for CV requires
particular knowledge that the CV of the Hosgri fault is very different from the well-
studied strike-slip faults of California.

Our second reply is that a recurrence model that includes some sort of time dependence is
intrinsically more complete than a model that ignores it.. It is entirely possible that the
Hosgri fault is well past its average recurrence time. A time-independent PSHA would
not naturally use this information. From a public safety standpoint, a purely time-
independent model would leave out recurrence behavior that is frequently observed on
active strike-slip faults. For the case of the Hosgri fault, defensible minimum times since
the MRE of 144 and more likely, 242 years would raise the mean hazard estimate west of
San Luis Obispo. Uncertainties in the functional form of the recurrence model, the slip
rate, and elsewhere in the model preclude resolution to three decimal places, but our
approach gives reasonable estimates to about two. Considering how little information is
available as inputs, this seems somewhat remarkable.

Equivalent Poisson ratios assume faults are gradually being loaded and experience
sudden release in fault rupture. This concept is expressed in the recurrence model
functional forms that we have used in their estimation. At the western margin of central
California, seismic and geodetic data give some confidence that processes at work and
that the functional forms that describe recurrence elsewhere in the state can be applied
here also. For sites where secular loading cannot be assumed, our EPR estimation method
can be adapted if other functional forms of recurrence can be proposed. Ultimately,
however, if nothing useful is known about the recurrence model, no magic in our
approach to time dependent hazard can redeem the situation.

H.7.0 CONCLUSIONS

Modern seismic hazard analyses must include all technically defensible models for
earthquake recurrence. Many paleoseismic investigations in California and elsewhere
find some degree of time dependence in ground ruptures. Thus, absent strong evidence to
the contrary, a time-dependent branch must be considered in evaluating hazard from fault
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sources in California. In many cases, however, the need to estimate the potential hazard
consequences from time dependence cannot be met with adequate data for the estimate.
We present a new approach that yields a useful range of time-dependence estimates
expressed as factors of the time-independent hazard rate. The method builds from a
parameter likely to be available in a fault source study —the fault slip rate. The fault slip
rate can be related to a range of possible earthquake recurrence rates through a bounded
range of average DPE. A specially designed weighting method focuses probabilities and
yields EPR estimates by CV. CV weighting informed by paleoseismic results in
California lead to EPR values and distributions suitable for use in hazard estimation.

We find mean EPR estimates of 1.09, 1.24, and 1.33 for slip rates of 0.7, 1.7, and 2.7
mm/yr, respectively, applicable to the Hosgri fault in the near-offshore of central
California, under the assumption that no significant Hosgri fault earthquake has occurred
since the founding of the San Luis Obispo mission in 1772. Lower mean EPRs of 1.05,
1.14, and 1.21, respectively, result if the catalog of ground-rupturing earthquakes is
considered complete only since the founding of San Luis Obispo around 1870. The
influence of the open interval since the most recent event decreases as its fraction
becomes smaller compared to the LTM recurrence interval. This trend is observed in our
results for a low slip rate fault. With a rate of 0.26 mm/yr patterned on the Los Osos fault,
the mean EPR is about 1.02. The mean EPR approaches 1.0 as tMRE/LTM approaches O.
We also show on the other hand that a paleoseismic constraint on a low slip rate fault can
be useful for estimating the EPR, even when the MRE date can only be limited to being
older than some age.

Time dependence as expressed in the EPR amounts to a direct relative increase in the
estimate of seismic hazard compared to an analysis that omits it. The potentially
prominent role of the EPR in seismic hazard estimates will attract attention, and
undoubtedly future research into the topic. In the meantime, our approach offers a simple
way to estimate time dependence to at least the first order, and thus provides a useful
method for including time dependence in site specific PSHAs where tectonic loading is
responsible for hazard-significant earthquakes.
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Used to Select Regions in the
Conditional Probability Ratio

DCPP SSC REPORT

m Pacific Gas and Electric Company Figure H-7




e_H_08.ai; Date: 02/24/2015; User: Serkan Bozkurt, LCI; Rev.1

File path: S:\1005\005\Final_Report_Figures\Appendices_Figures\EPR\Figur

EPR; CV: 0.6

Fraction of Total

O !
0 0.5
Equivalent Poisson Ratio

1

1.5

Note: Red stars mark the 91.5%, 50%, and 8.5% points used for three-point summaries by CV.

Fraction of total extends to 1.0.

Sorted Equivalent Poisson Ratio vs.
Corresponding Cumulative Weight

DCPP SSC REPORT

M Pacific Gas and Electric Company Figure H-8




e_H_09.ai; Date: 02/24/2015; User: Serkan Bozkurt, LCI; Rev.1

File path: S:\1005\005\Final_Report_Figures\Appendices_Figures\EPR\Figur

EPR, Lognormal Recurrence, CV=0.6, Four Historical T,ih, Cases

1

08

06

04

Fraction of Total

02

T I@ A T
\ ?7 \ Tmin- O
L — Tmin: 144
! L —— Tmin: 242
L >N i
]
I
L Lobb i
T
N
- bkt .
N
1 Ié 6:& A 1
0 05 1 15 2

Equivalent Poisson Ratio

Note: Dashed lines are the weighted means corresponding by color and symbol to Ty cases.
Hosgri displacement-per-event profile is used for all curves.
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for Four Values of Historical Constraint T
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Notes:

- Dotted lines are CV-weighted mean values of corresponding solid lines.
- Hosgri displacement-per-event distribution is used for all cases.
- Trmin is 242 years for all fault slip rates shown.

Weighted Mean Equivalent Poisson Ratio
Estimates by Coefficient of Variation for the
Lognormal Model and Three Fault Slip Rates
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- Dotted lines are CV-weighted mean
values of corresponding solid lines.
- Hosgri displacement-per-event distribution
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Distribution for Three Fault Slip Rates

DCPP SSC REPORT

HH Pacific Gas and Electric Company|  Figure H-13




H_14.ai; Date: 02/24/2015; User: Serkan Bozkurt, LCI; Rev.1

File path: S:\1005\005\Final_Report_Figures\Appendices_Figures\EPR\Figure

Equivalent Poisson Ratio

EPR Three-Point Distributions for Three Recurrence Models

2 T T T T

-
(6]
T

—_
T

o
(&)
T

0 Il Il Il Il
0 20 40 60 80

EPR Cumulative Distribution Points

EXPLANATION

—>—  Lognormal

-6 - BPT
—~¥—  Weibull
Notes:

- Slip rate = 1.7 mm/yr for all recurrence models
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and summed.
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