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ABSTRACT 
Under the principles of probabilistic seismic hazard analysis (PSHA), technically 
defensible models of fault behavior must be included in the analysis. The model most 
commonly used in PSHA for earthquake occurrence, the Poisson model, cannot directly 
accommodate time dependence. Nevertheless, time-dependent earthquake recurrence has 
been reported at paleoseismic sites in California and elsewhere, and a general model of 
time dependence can be anticipated under a mechanical model of secular tectonic fault 
loading with quasi-periodic failure in earthquakes. For faults with a long paleoseismic 
record and a documented most recent event, time dependence can be incorporated into 
PSHA using other recurrence models. We present here a new method for incorporating 
time dependence when little more than the fault slip rate is known about the fault of 
interest. We call the estimate the Equivalent Poisson Ratio (EPR), since it is not an 
absolute estimate of time-dependent hazard, but rather a ratio applied to a time-
independent hazard estimate developed by conventional PSHA methodologies. 

Fault slip rate can be used with bounds on potential displacement per event to develop a 
range of possible earthquake recurrence intervals. Each recurrence interval is associated 
with a conditional survival function that describes the probability of an open interval of 
any given length since the last fault-resetting event. A crafted likelihood approach based 
on the joint probability of the recurrence interval and time since the most recent event 
leads to an EPR estimate for any given coefficient of variation (CV) of the time-
dependent model functional form. Weighting by likelihood across values of CV leads to 
the final EPR estimates. We express them in terms of a three-point cumulative 
distribution approximation, and use the branch-weighted-mean EPR where a single EPR 
value is desired. EPR estimates depend on the ratio of the open time since the most recent 
event (tMRE) to the recurrence interval, and tend to 1.0 as the ratio approaches 0. 

We illustrate the method with nominal values from two faults near the coast of Central 
California that contribute to the site-specific seismic source characterization at the Diablo 
Canyon Power Plant (DCPP). The branch-weighted-mean EPR estimate for the Hosgri 
fault using the lognormal recurrence distribution and a minimum tMRE = 242 years is 
1.24 (1.09–1.33) for a fault slip rate of 1.7 (0.7–2.7) mm/yr, where the range reflects the 
8.5% and 91.5% values of a continuous distribution. Using the same tMRE and 
recurrence model, a nominal slip rate of 0.26 (0.18–0.36) mm/yr for the Los Osos fault 
yields an EPR estimate of 1.03 (1.02–1.04), which, considering the uncertainties 
involved, could be rounded to 1.0. Although the branch-weighted mean is essentially 1.0, 
three-point approximation points, 0.26, 1.16, and 1.54, can be carried forward, if desired 
into a logic tree with their corresponding weights of 0.25, 0.50, and 0.25. The upper limit 
physically corresponds to the weight of evidence that the fault is due or past due relative 
to its average. 

We also show how even limiting evidence about the MRE from paleoseismic 
investigation can significantly increase the mean EPR. Although this methodology was 
developed in the course of the seismic source characterization (SSC) for the DCPP, the 
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results presented here should be considered only representative. Final values and 
implementation details are provided in the main SSC documentation. 

H.1.0 INTRODUCTION 
If ground-rupturing earthquakes occur randomly in time, their occurrence can be modeled 
as a Poisson process. If earthquakes instead release energy stored during a period of 
tectonic loading, they will be more likely to occur when the energy storage is high and 
less likely when it is low, including in the early time following an earthquake.  

The model of elastic loading of faults by secular processes and sudden release in 
earthquakes was first articulated by Reid (1911). This model has given rise to end-
member models for predicting earthquake timing and size. The time-predictable model 
(Shimazaki and Nakata, 1980) predicts failure time based on the slip in the previous 
event and a model of fixed fault strength. The alternative slip-predictable model makes 
no claim about when an earthquake will occur, but predicts the slip amount (~earthquake 
size) as a function of time since the previous event. Neither model has proven entirely 
satisfactory (e.g., Weldon et al., 2004), but in environments where secular loading occurs, 
release in occasional, perhaps temporally irregular, earthquakes is now generally 
accepted. 

The concept of time-dependent earthquake occurrence in probabilistic seismic hazard 
analysis (PSHA) applies to fault-specific seismic sources. The inter-event times for 
earthquakes distributed randomly in time as described by a Poisson model follow an 
exponential distribution. The exponential model for earthquake recurrence is attractive 
because it requires only one parameter, the mean inter-event time. Modeling earthquakes 
as being random in time is also attractive when little is known about inter-event times 
because the use of more complicated models with two or more parameters cannot be 
rigorously defended by their improved fit to data (Akaike, 1974). Another reason for the 
use of the Poisson (random in time) model is that regulatory design criteria are expressed 
as target annual frequencies of exceedance (e.g., 10-4) without consideration of any time 
dependence. Given the prominence of the Poisson model of earthquake occurrence in 
PSHA, most computer codes for hazard estimation have, until recently, assumed the 
Poisson model. Recognition that earthquake occurrence may be time dependent creates 
interest in ways that current PSHA computer codes can be used and still model time-
dependent sources. Equivalent Poisson Ratio estimates are the relative adjustments to 
time-independent rupture rates necessary to produce the equivalent time-dependent 
rupture rate.  

Relying solely on the Poisson model of earthquake occurrence runs counter to another 
principle of PSHA: namely, that the price for lack of information is increased uncertainty. 
In this case, the lack of information about earthquake recurrence does not automatically 
justify use of the simplest available recurrence model. If an earth model of secular 
tectonic loading is considered credible, then a time-dependent recurrence model must 
also be part of the uncertainty in the hazard assessment.  
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We show in this paper that well-posed estimates of relative time-dependent seismic 
hazard can be developed from an estimate of fault slip rate and limited information about 
the time since the most recent event. We call the relative hazard estimate the Equivalent 
Poisson Ratio (EPR) because it is expressed as a ratio of the time-dependent to the time-
independent hazard estimate.  The EPR formulation can be applied in hazard codes as a 
constant that multiplies the time-independent hazard. Unknown parameters that affect the 
hazard estimate such as earthquake displacement per event (DPE) and the coefficient of 
variation (CV) of recurrence are included as geologically bounded ranges. The resulting 
estimates can be tested for robustness to alternative input parameters. We find that time-
dependent EPR estimates are stable in the presence of reasonable alternative values for 
the contributing constraints. The method for estimating EPRs is developed in somewhat 
general terms, but where illustrations help the discussion, examples are drawn from a 
site-specific application on the central coast of California, the seismic hazard estimation 
at the Diablo Canyon Power Plant.  

H.2.0 RECURRENCE MODELS 
We will use f(t; θ) to refer to the probability density function (PDF) with distribution 
parameters θ for intervals between ground-rupturing earthquakes, and F(t; θ) for the 
corresponding cumulative distribution function (CDF). Reference to θ may be dropped 
when the role of the parameters is clear from the context. The conditional probability CP 
of an earthquake for a forecast period Tf starting at time t is then 

 𝐶𝐶𝐶𝐶�𝑡𝑡;  𝑇𝑇𝑓𝑓,𝜽𝜽� =  𝐹𝐹�𝑇𝑇𝑓𝑓+𝑡𝑡�−𝐹𝐹(𝑡𝑡)
1−𝐹𝐹(𝑡𝑡)

  (H-1) 

On Figure H-1, CP(t; Tf,θ) is the ratio of the area under the PDF from t to t + Tf (dark 
gray) divided by the total area to the right of t (sum of the shaded areas). Two examples 
are shown on Figure H-1: the upper for an exponential distribution, and the lower for a 
lognormal distribution. The long-term mean (LTM) is the same for both distributions. 
The predictions of the two models differ most strongly at times that are short compared to 
the LTM. 

If earthquakes are distributed randomly in time, the intervals between events have an 
exponential distribution (Figure H-1a) with a single parameter θ = λ, where λ is the LTM 
rate of earthquake recurrence: 

 𝑓𝑓(𝑡𝑡;𝜆𝜆) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 (H-2) 

with cumulative distribution 

 𝐹𝐹(𝑡𝑡;  𝜆𝜆) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 (H-3) 

On Figure H-1, λ = 1.0. From Equation H-1 the conditional probability of an event in the 
next Tf years is then 

 [𝑒𝑒−𝜆𝜆𝜆𝜆 − 𝑒𝑒−𝜆𝜆�𝑡𝑡+𝑇𝑇𝑓𝑓�]
𝑒𝑒−𝜆𝜆𝜆𝜆
� = 1−  𝑒𝑒−𝜆𝜆𝑇𝑇𝑓𝑓  ≈  𝜆𝜆𝑇𝑇𝑓𝑓 (H-4) 
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where the final approximation applies when Tf is small compared to the recurrence 
interval.  Thus, if the occurrence of earthquakes is described by a Poisson process, then 
the conditional probability of an event in some future time is independent of time and 
normally approximately equal to the annual rate times the forecast length Tf,. 

For time-dependent recurrence models, the conditional probability depends on the time 
since the fault was reset. As an example, the lognormal probability distribution (Figure 
H-1b) characterizes variables whose logarithms are normally distributed with parameters 
θ = {µ, σ} where µ is the mean log of interval lengths and σ 2 is the variance: 

  𝑓𝑓𝐿𝐿𝐿𝐿(𝑡𝑡;𝜇𝜇,𝜎𝜎) = 1
𝑡𝑡𝑡𝑡√2𝜋𝜋

𝑒𝑒
−(ln(𝑡𝑡)−𝜇𝜇)2

2𝜎𝜎2  (H-5) 

The CDF of the lognormal distribution is  

 𝐹𝐹𝐿𝐿𝐿𝐿(𝑡𝑡;𝜇𝜇,𝜎𝜎) =  1
2

+ 1
2

erf �ln(𝑡𝑡)−𝜇𝜇
√2 𝜎𝜎

�, (H-6) 

where erf(.) is the error function. Substituting FLN(t; µ,σ) into Equation (H-1) would 
confirm that the Tf-period conditional probability is time dependent. 

The hazard function for continuous distribution functions expresses the instantaneous rate 
of an event as a function of time: 

 𝐻𝐻(𝑡𝑡;𝜃𝜃) =  𝑓𝑓(𝑡𝑡; 𝜃𝜃)
1−𝐹𝐹(𝑡𝑡; 𝜃𝜃)

 (H-7) 

Comparing the hazard functions for the exponential and lognormal distributions brings 
out a fundamental difference between the two. For any value of t, including as t 
approaches 0, H(t) for the exponential distribution (Equation H-3) equals λ. Applied to 
earthquake recurrence, this means that the hazard from a ground-rupturing earthquake is 
the same immediately after one occurs as it was at any time before it. In contrast, fLN(t) 
and FLN(t) approach 0 as t → 0, and HLN(t) = 0. Thus, under the lognormal model, the 
hazard is small immediately after a large event.  

Lognormal parameters µ and σ are related to the LTM recurrence rate λ by 

 1
𝜆𝜆� = exp (𝜇𝜇 + 𝜎𝜎2

2� ) (H-8) 

The arithmetic CV for the lognormal distribution is independent of µ and given by 

 𝐶𝐶𝐶𝐶 =  �𝑒𝑒𝜎𝜎2 − 1 (H-9) 

If we know λ and σ, we can form a ratio of conditional probabilities between time-
dependent and exponential models that share a common long-term mean (Figure H-2). As 
anticipated in our examination of H(t), the conditional probability ratio (CPR) is zero just 
after the previous earthquake, increases to 1.0 when the time-dependent and time-
independent forecasts are equal, and reaches a maximum that depends on the lognormal 
width parameter before declining.  
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After introducing two other time-dependent distributions for earthquake recurrence, we 
will focus on how to estimate hazard ratios when information about recurrence 
parameters and the time since the most recent event is limited. 

The Brownian Passage Time (BPT) model of earthquake recurrence (Ellsworth et al., 
1999; Matthews et al., 2002; WGCEP, 2003) is an application of the inverse Gaussian 
distribution. It models recurrence in terms of a secular loading rate, around which are 
random Gaussian deviations representing local strain increases or decreases. The BPT 
PDF can be formulated in terms of two variables, η and α: 

 𝑓𝑓(𝑡𝑡;  𝜂𝜂,𝑎𝑎) = � 𝜂𝜂
2𝜋𝜋𝑎𝑎2𝑡𝑡3

�
1
2 𝑒𝑒𝑒𝑒𝑒𝑒 �(𝑡𝑡−𝜂𝜂)2

2𝑎𝑎2𝜂𝜂𝜂𝜂
� (H-10) 

Location parameter η characterizes the secular loading rate. Numerically, η is the 
arithmetic mean of the interval lengths and equal to the reciprocal of λ from the 
exponential distribution. Parameter α is numerically the CV, although Matthews et al. 
(2002) prefer the term aperiodicity on mathematical grounds. The BPT model can have a 
wider variety of shapes than the lognormal distribution, but the two are similar for 
parameters likely to come from paleoseismic data. 

We also consider the Weibull distribution. The Weibull distribution is sometimes applied 
to forecast probabilities of a large earthquake because of its more common use in 
modeling time-to-failure rates in mechanical or engineered systems. The PDF for Weibull 
random variables and t ≥ 0 is 

 𝑓𝑓(𝑡𝑡;  𝜈𝜈, 𝑘𝑘) =  𝑘𝑘
𝜈𝜈
�𝑡𝑡
𝜈𝜈
�
𝑘𝑘−1

exp �−�𝑡𝑡
𝜈𝜈
�
𝑘𝑘
� (H-11) 

Parameter ν governs the width of the distribution. Comparison of the Weibull cumulative 
distribution  

 𝐹𝐹(𝑡𝑡;  𝜈𝜈,𝑘𝑘) =  1 − exp (−�𝑡𝑡
𝜈𝜈
�
𝑘𝑘

) (H-12) 

to Equation (H-3) shows that parameter k controls the shape of the Weibull distribution 
relative to an exponential. For k = 1 the Weibull distribution reduces to the exponential 
distribution. For k > 0, the failure rate increases monotonically with time. 

H.3.0 INCLUDING UNCERTAINTY IN CONDITIONAL 
PROBABILITY RATIOS 

Our strategy to generalize CPRs begins with knowledge of the slip rate on the fault for 
which we seek the hazard. Values for slip rate typically are developed through geologic 
investigations. Initially, we consider slip rate r, in mm/yr, without uncertainties, but will 
return to include uncertainties after the basic method is set out. 

We parlay the fault slip rate into a set of mean recurrence rates by dividing the slip rate 
into a set of candidate mean slips per event D. For estimating time dependence, it is the 
future slip that matters.  Since this is unknown, we instead propose a distribution of D 
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consistent with the state of knowledge from the fault of interest, or from similar faults. 
Two such example distributions are shown on Figure H-3.  

The two curves on Figure H-3 model DPE on two types of fault. The broader distribution 
(solid line) is designed to apply to moderate strike-slip faults such as the Hosgri fault off 
the coast of Central California. The distribution conveys a relative agnosticism among 
choices in DPE from 1.5 meter (m) to 3.0 meters per event (m/event), with tolerance for 
values as small as 0.5 m and non-zero probabilities up to 5.5 m/event. How, one might 
ask, can bounds on DPE be offered? One approach is to look at previous ground ruptures 
in the region. In California, for example, the largest measured average slips per event on 
the San Andreas fault are 4.45 m/event and 4.3 m/event for the 1857 and 1906 
earthquakes, respectively (Biasi et al., 2013). Limited available slip-per-event data from 
previous such events (Zielke et al., 2010) suggest similar, but not likely larger, events in 
the past. Using an upper bound of 5.5 m/event reflects the possibility that not all is known 
about California’s strike-slip faults. The second curve on Figure H-3 (dashed) was 
constructed for application to smaller faults. It expresses some geological confidence, 
perhaps from paleoseismic investigations or fault-length scaling, that slips of 1.0–2.5 m 
average per event are most likely, but that a range of 0.5–4.0 m/event are at least 
minimally credible for the fault. The actual distributions are parametric inputs, so it is 
straightforward to evaluate whether any choices are strongly influential. In practice, EPR 
results are not strongly sensitive to reasonable choices for the shape of the DPE set. 

We calculate LTM earthquake recurrence times by dividing DPE by the fault slip rate. 
The probabilities of each possible LTM value are copied from the DPE distribution. For 
each LTM value, 1/LTM = λ can be used in the time independent Poisson distribution 
and the LTM itself is the basis for the location parameter of time-dependent distributions. 

The width parameter of the time-dependent PDF governs how regularly or irregularly 
earthquakes occur on the fault. As with the LTM, a precise estimate is not available, but 
an informed range can be offered. Figure H-4 shows two distributions that express 
somewhat different views of the CV distribution. The solid line is patterned after the 
range observed at high-quality paleoseismic sites on California strike-slip faults. It 
expresses greatest confidence in CV values between 0.5 and 0.8, and less confidence in 
very regular (CV < 0.5) or more random recurrence. This range bounds 10 of 11 well 
characterized California paleoseismic records (Biasi, 2013; Weldon et al., 2013). By 
emphasizing this range, we express some confidence that the Hosgri fault in California 
would fall in a similar range, but recognize also that more or less regular recurrence is 
possible. The second distribution on Figure H-4 (dashed) represents a less clear range 
designed for dip slip faults. Mechanically, dip slip faults do not have as strong a 
continuity of motion requirement as strike-slip faults. Unfortunately at present dip slip 
faults are not as well characterized as strike slip faults. Consequently a wider range of CV 
values is considered credible; the effect is to add uncertainty in the CV range. As with the 
DPE distributions, we will find that EPR estimates do not strongly depend on the CV 
distribution. 
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The conditional probability of a future event in a time-dependent model depends on the 
time since the most recent event (tMRE). The most recent event for hazard purposes is 
defined as the event that resets the clock for occurrence of ground rupturing earthquakes. 
One of two types of tMRE constraints are available for most faults. The first is an 
inequality constraint, tMRE > Tmin, that sets some minimum time in the past after which 
no resetting event is believed to have occurred. In most places a minimum tMRE of some 
decades can be given based on instrumental records (Felzer, 2013). In much of southern 
California, records from Spanish missions allow an estimate of tMRE > 200 years 
(Toppozada et al., 1981). A pre-historic minimum tMRE might be developed from a 
paleoseismic record where the most recent ground rupture is dated but the magnitude of 
the event, and thus the time of fault resetting is uncertain. The second type of tMRE 
constraint is an equality relation, tMRE = Teqk. Historical events in California in this 
category include the 1857 Fort Tejon and 1906 San Francisco earthquakes. An equality 
constraint could also apply if paleoseismic data were of such good resolution and strike 
extent that a single large event is the only credible explanation. Such an event near 1720 
A.D. seems required to explain paleoseismic evidence on the southern San Andreas fault 
(Sieh 1986; Seitz and Williams, 2007; Philibosian et al., 2011; Haaker et al., 2013).  

H.4.0 ESTIMATING EQUIVALENT POISSON RATIOS 
With the necessary components in hand, we now consider the process of estimating 
EPRs. We use a lognormal distribution in the explanation (Figure H-5), planning to 
include the BPT and Weibull distributions afterward. In outline, the process is in two 
parts. The first part is to generalize conditional probability calculations to cover the full 
range of possible recurrence intervals and possible times since the most recent event for 
each considered CV value. We use the term “conditional probability ratio” to refer to 
ratios made without reference to the weight or probability given to the input values. The 
EPR is extracted from the CPR by weighting inputs such as the DPE and minimum time 
since the most recent event. In the realm of seismic source characterization, the EPR thus 
includes judgments and weights on input values, while the CPR covers a range of input 
values without reference to their credibility. The range of possible CV values is included 
by treating the CV as an epistemic unknown (Figure H-4). EPR estimates for a given CV 
are combined in the end according to CV weights. Fault slip rate is constant within 
individual EPR estimates, and slip rate uncertainty is included by combining EPR 
estimates using slip rate weights as an epistemic uncertainty.  

Figure H-5 summarizes the calculations leading to conditional probability ratios for three 
assumed values of LTM, a CV = 0.6, and a fault slip rate of 1.7 mm/yr, the current best 
estimate for the Hosgri fault. LTM values of 500, 1000, and 2,000 years were used on 
Figure H-5. These LTM values correspond to 0.85, 1.7, and 3.4 meter (m) average DPE 
values, respectively – similar to the expected range on many faults in California. 
Lognormal PDFs for the three LTM values are shown on Figure H-5a. In Figure H-5b we 
show the survivor functions S(t) = 1-F(t). S(t) is also known as the complementary 
cumulative distribution. The survivor function for a given LTM describes how probable 
any given wait time would be since the MRE. For example, for an LTM of 1,000 years, 
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the median recurrence interval would be approximately 800 years, and the wait time 
should be ≤2,550 years 97.5% of the time (circle symbol). The 97.5% limit is 
proportional to LTM; for CV = 0.6, tMRE will be less than 2.55 × LTM. The ratio 
increases with CV, corresponding to increasing weight in the right tail of the PDF. For 
each LTM, conditional probabilities of ground rupturing earthquakes can be calculated 
across the range of times since the MRE (Figure H-5c). Numerically, 30-year forecasts 
have been used. For the renewal-based earthquake recurrence models, there is a range of 
tMRE and LTM in which time-dependent conditional probabilities are smaller than 
corresponding time-independent estimates. However, for most of the likely range of 
tMRE, the CPR is larger than 1.0, indicating that the time-dependent hazard is greater 
than the corresponding Poisson rate. This range in hazard is the origin of the EPR. The 
ratio (Figure H-5d) peaks near the mode of the lognormal PDF, then declines with 
increasing tMRE. Plots on Figure H-5d end at the upper 97.5% point of their respective 
survivor functions (circles, Figure H-5b) to make the point that greater values of tMRE 
would be increasingly inconsistent the respective assumed values of LTM and CV. In 
addition to being internally consistent, this approach of focusing attention on the probable 
range of tMRE minimizes the impact of differences in asymptotic behavior between the 
lognormal, Brownian Passage Time, and Weibull recurrence distribution models. 

The effect of constraints on tMRE > Tmin can be anticipated on Figures H-5c and H-5d. 
Suppose, for example, that tMRE < 500 years could be eliminated by a paleoseismic 
constraint. Then even without definite information on the true value of tMRE or the 
LTM, any weighted combination of the remaining portions of the CPRs on Figure H-5d 
would lead to an EPR in the range of 1.6–1.7 for this CV. 

The conditional probability ratio lines on Figure H-5d can be generalized into a surface 
using the complete range of tMRE and LTM (Figure H-6). A grid is constructed by 
dividing ranges of LTM and tMRE into small increments ∆LTM and ∆tMRE, 
respectively. An increment of 20 years was used for both. Each of the lines on Figure 
H-5d becomes a row on Figure H-6, except for not being truncated at its 97.5% limit. The 
peak of the conditional probability ratio surface trends linearly with LTM on Figure H-6 
because for a given CV, the shapes of the underlying recurrence PDFs (Figure H-5a) are 
self-similar. The CPR surface on Figure H-6 is a mathematical construct that does not 
consider the likelihood of any particular values of LTM and tMRE.  

We now require a means to associate weights with the gridded CPR values on Figure 
H-6. Conceptually this can b done by dividing the CPR into small discrete ranges, then 
for each, summing the weight associated with that range. We form a joint probability 
surface W on the same LTM-tMRE grid. The LTM probability distribution comes from 
the input displacement-per-event distribution and a slip rate of 1.7 mm/yr. The 
probabilities for individual discrete values LTMi are found by finely resampling the LTM 
PDF, then renormalizing to give a unit total probability. For each value LTMi there is a 
row with the corresponding survivor function S(tMRE) = 1-F(t). The probability for the 
unknown time since the last event, given the recurrence rate and CV, is given by the 
survivor function. The discretized S(tMRE) is normalized to sum to unit area so it can be 
applied to the grid. Numerically, values on the joint probability grid are given by: 
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 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖)𝑆𝑆�𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑗𝑗|𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖� (H-13) 

Each row in the weighting grid is a complete PDF conditioned on LTM = LTMi. 
Summing Wij over j yields LTMi, and the sum over LTMi = 1 by construction. The 
resulting joint probability surface for CV=0.6 is concentrated above the diagonal LTM = 
tMRE because of the shape of S(t). Probabilities decline with largest allowed values of 
LTM because they are associated with declining probabilities of the largest allowed 
displacements per event (Figure H-2). In Figure H-7 the joint probability surface has been 
normalized by its maximum value so that the contours numerically reflect relative weight 
on a scale from 0 to 1.  

Weighting of the CPR surface (Figure H-6) is applied in two steps. First, the CPR is 
sorted from largest to smallest in an equivalent one-dimensional array, CPR(K), where K 
is the sort order, and k indexes K. The same “sort” order K is applied to W. The 
cumulative sum of W(K) is denoted as F(W).  F(W(k)) gives the weight (probability) that 
the weighted CPR is equal or greater than CPR(k). Pairs of CPR(k) vs. F(k) are plotted on 
Figure H-8. Because weights are now applied to the CPR, we call Figure H-8 the 
equivalent Poisson ratio for this CV.  In subsequent plots we will summarize EPR values 
in terms of a three-point distribution (Miller and Rice, 1983) suitable for use in a logic 
tree. Stars on Figure H-8 mark the 91.5%, 50%, and 8.5% distribution values.  EPR 
values for these points are multiplied by [0.25, 0.50, 0.25], respectively, to obtain the 
weighted mean EPR value for this CV. 

In explaining the joint LTM-tMRE surface, we used tMRE > Tmin = 0. In effect this 
means that a ground-rupturing earthquake could have occurred last year. Focusing for the 
moment on the central California coast, older Tmin values might be considered. The 
inauguration of the Southern California Seismic Network in 1932 would lead to Tmin > 82 
years. The founding of San Luis Obispo as a city, and establishment of a newspaper, and 
road and rail connections in the 1870s would give a fairly secure Tmin = 144 years. Felzer 
(2013) estimates the magnitude of completeness for the central California coastal region 
since this time to be M ≥ 6.5. Finally, the Spanish mission record at San Luis Obispo 
starts in 1772 and appears to be fairly complete. This would allow some confidence for 
large events in Tmin = 242 years. We implement the constraint tMRE > Tmin by removing 
the range t < Tmin in S(t) and renormalizing. Mathematically, S(t) is replaced by 
S(t|t>Tmin). EPR values for these four cases and a distribution CV of 0.6 are shown on 
Figure H-9. Dashed lines on Figure H-9 are weighted mean EPRs, matched to the curves 
by color and symbol type. This figure shows that even weak historical limits on tMRE 
directly influence the CPR estimate. tMRE constraints remove the early time portion of 
the CPR where the ratio is less than 1.0 and the time-dependent hazard is smaller than the 
time-independent. The remaining range is thus concentrated in CPR ratios greater than 1, 
which raises the net weighted EPR value. The effect of Tmin diminishes as it becomes a 
smaller fraction of the mean recurrence time.  

If the date of the relevant MRE is known, the equality constraint tMRE = Teqk can be 
applied. With the equality constraint, there is no weighting to be done across the range of 
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tMRE, and W for calculating the EPR reduces to the weights in a single column at tMRE 
= Teqk.  

We plot weighted mean EPR values for all considered values of CV and three fault slip 
rates on Figure H-10. In general EPR estimates will vary with CV. In this case EPR 
values are larger for small CV values because their recurrence PDFs are narrower and 
concentrate more weight in the forecast period (e.g., Figure H-5d). 

To arrive at final estimates of EPR for the assumed slip rate, we weight the three-point 
values of EPR estimates (e.g., Figure H-8) by the CV weighting shown on Figure H-4. 
Figure H-11 provides final values for the three fault slip rates, with their corresponding 
three-point values. As shown on Figure H-11, EPR estimates are stable, varying in a 
predictable relationship to fault slip rate. Upper branch (91.5%) values are consistently 
around 1.85, corresponding to an interpretation that rupture is “due”. Physically, the fault 
has accumulated at least 1.7 mm/yr*242 yr = 0.41 m of slip since the latest allowed 
MRE. High estimates of EPR gather weight from smaller allowed values of CV and from 
the smaller range of allowed DPE for which rupture would be more imminent. The 
available data allow these combinations, so from a PSHA standpoint they must be part of 
the range of the EPR estimate. At the same time, to increase the EPR much further would 
require affirmative data for a lower range of CV. On the small end, with 8.5% weight, the 
EPR could be as low as 0.16 to 0.58. These values draw most of their weight from 
combinations of large DPE and large CV. Large DPEs correspond to long recurrence 
intervals and a smaller ratio of Tmin to the recurrence interval. Branch-weighted-mean 
EPR values using the method of Miller and Rice (1983) are calculated using 
0.25*EPR8.5% + 0.50*EPR50% + 0.25*EPR91.5%. We obtain branch-weighted-mean EPR 
estimates for the Hosgri fault of 1.09, 1.24, and 1.33 for slip rates of 0.7, 1.7, and 2.7 
mm/yr, respectively (Table H-1).  

Table H-1. Moderate Slip Rate Fault Three-Point Distribution and Branch-
Weighted Mean (BWM) EPR for Three Recurrence Distributions and Several 
Values of tMRE 

Fault PDF 
Slip 
Rate tMRE 8.5% 50% 91.5% BWM 

Hosgri LN 1.7 242 0.39 1.35 1.85 1.24 
Hosgri LN 0.7 242 0.15 1.18 1.86 1.09 
Hosgri LN 2.7 242 0.58 1.46 1.84 1.33 
Hosgri LN 1.7 0 0.04 1.05 1.83 0.99 
Hosgri LN 1.7 82 0.15 1.16 1.84 1.08 
Hosgri LN 1.7 144 0.24 1.24 1.84 1.14 
Hosgri LN 0.7 144 0.10 1.12 1.86 1.05 
Hosgri LN 2.7 144 0.38 1.32 1.82 1.21 
Hosgri BPT 1.7 242 0.42 1.35 1.81 1.23 
Hosgri WBL 1.7 242 0.59 1.08 1.92 1.17 
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EPR estimates for low slip-rate faults follow the above outline. Table H-2 gives EPR 
results for a nominal slip-rate estimate set of the Los Osos fault, which is thought to slip 
at a rate an order of magnitude slower than the Hosgri fault. Estimates are given for two 
values of minimum tMRE. The main difference for low slip-rate faults is that it takes 
more time to accumulate enough slip for a moderate or large earthquake. The ratio of 
tMRE to the recurrence interval determines the influence of the open interval. This ratio 
is small for low slip rate faults, causing the branch-weighted-mean EPR values to be only 
slightly greater than 1.0. In Table H-1, the extreme case of tMRE = 0 is thus an end-
member, and within the resolution, 1.0.  

We can use our EPR estimation tools to explore the value of paleoseismic data to the 
EPR estimate. To do this we adopt the nominal slip rate of 0.26 mm/yr, the same as for 
the Los Osos fault, but use a hypothetical minimum tMRE of 2,000 years. Under this 
scenario, the branch-weighted-mean EPR increases to 1.21 (Table H-2), or about a 20% 
increase in the mean time-dependent hazard compared to an EPR estimate with no 
meaningful constraint on the date of the MRE.  

Table H-2. Low Slip Rate Fault Three-Point Distribution and Branch-Weighted 
Mean (BWM) EPR for Two Values of tMRE 

Fault PDF 
Slip 
Rate tMRE 8.5% 50% 91.5% BWM 

Los Osos LN 0.26 242 0.26 1.16 1.54 1.03 
Los Osos LN 0.18 242 0.24 1.16 1.54 1.02 
Los Osos LN 0.36 242 0.29 1.17 1.53 1.04 
Los Osos LN 0.26 144 0.21 1.15 1.54 1.01 
Los Osos LN 0.18 144 0.20 1.15 1.54 1.01 
Los Osos LN 0.36 144 0.23 1.15 1.53 1.02 
Hypothetical LN 0.26 2000 0.67 1.32 1.54 1.21 

H.5.0 PARAMETRIC EVALUATION 
In this section we explore the robustness of EPR estimates to the choice of recurrence 
functional form and the difference between inequality and equality constraints on tMRE. 

On Figure H-12 we compare survivor functions and EPR given CV for the lognormal, 
BPT, and Weibull distributions. We use a fault slip rate at 1.7 mm/yr, an LTM value of 
700 years, and a range of CV values. Lognormal and BPT models are most similar to one 
another (Figure H-12). For both models and most CV values, the survivor functions near 
S(t) = 1 decrease slowly at first, corresponding to low probabilities of an event just after 
the MRE. In contrast the Weibull S(t) function decreases immediately, especially for 
smaller CV values. When tMRE < Tmin is removed, so is the early low probability portion 
of the Weibull distributions. As a result, Weibull EPR values reach a factor of two or 
more larger values than either of the other two models. The monotonic increase in hazard 
with tMRE for the Weibull distribution can also be seen.  
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At first it might appear that the increase in conditional probability values with tMRE, 
especially for the Weibull distribution and small CV values (Figure H-12c), could 
destabilize the EPR estimate. However, weighting by the CV distribution (Figure H-13) 
reduces this tendency. Instead of diverging, the net branch-weighted-mean EPR estimates 
(dotted lines on Figure H-13) are similar to those for the other recurrence models.  

On Figure H-14 values of CV-weighted EPR for a slip rate of 1.7 mm/yr and Tmin =242 
years are shown for the three time-dependent recurrence models considered. The 
lognormal points are repeated from Figure H-11.  The BPT estimates are seen to be very 
close to the lognormal values. Results from the Weibull distribution differ from the other 
two, being about 20% lower at the mid-point, but slightly higher on both ends.  If the 
Miller and Rice (1983) weights of [0.25, 0.50, 0.25] are applied to the 8.5%, 50%, and 
91.5% points, weighted mean EPR estimates of 1.24, 1.23, and 1.17 are obtained for the 
lognormal, BPT, and Weibull models, respectively. These values can be interpreted as the 
mean time-dependent hazard increase.  Most of the mean hazard increase comes from the 
information Tmin = 242 years. 

Finally, the large earthquake on the San Andreas fault in 1857 provides an opportunity to 
compare results of the constraint tMRE > Tmin to tMRE = Teqk = 157 years. The 1857 
M 7.8 event ruptured the fault from Parkfield southeast to beyond Wrightwood (Zielke et 
al., 2010). The magnitude and length of this rupture makes it a strong candidate as a 
resetting event, and since 1857 there have been no significant ground ruptures on the 
fault. The San Andreas fault slips at a rate of 30.3 mm/yr on the Cholame section at its 
nearest approach to DCPP, for a total of almost 4.8 m of slip since 1857. Figure H-15 
compares three-point distributions for constraint tMRE > Tmin and tMRE = Teqk. The two 
estimates are similar, with branch-weighted mean values of 1.28 vs. 1.34, respectively. 
Since the fault is at or somewhat beyond the average recurrence interval, the equality 
constraint preferentially focuses near maxima of the conditional probability surface. The 
inequality constraint tMRE > Tmin includes more of the declining CPR values at larger 
tMRE (e.g., the right side of Figure H-6). Since the equality constraint better represents 
the time dependence of the San Andreas fault, we use it to weight the fault’s sources. For 
cases where the choice is less clear, some weighted combination of the two results may 
be preferred. 

H.6.0 DISCUSSION 
Our approach for estimating EPR depends on the estimate of fault slip rate. In practice, 
fault slip rates are uncertain. In principle, slip rate uncertainties might be propagated 
directly into uncertainties in LTM and tMRE probabilities. This would, however, 
introduce an additional, potentially severe, layer of complexity. The simpler approach 
that we have taken is to link EPR estimates directly to the epistemic range of slip rate 
values and weights from geologic studies. In the present case, the Hosgri fault slip rate is 
expressed in a three-point distribution with rates of 0.7, 1.7, and 2.7 mm/yr and weights 
25%, 50%, 25%, respectively. These weights can be applied consistently to their 
respective EPR estimates because the slip rate and EPR estimates are causally linked.  
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Our approach to estimating EPRs uses units of real years. We chose this approach to keep 
the discussion more familiar to practicing geoscientists. Individually, components of the 
EPR estimation process might be normalized, such as expressing the LTM in terms of a 
range around some mean value (e.g., Figure H-2; see also Matthews et al., 2002; 
WGCEP, 2008). However, when the normalized LTM is used to weight probabilities of 
time since the most recent event, the joint probability surfaces (Figure H-7) become 
difficult to interpret directly, since Tmin is a different fraction of LTM on every row. The 
forecast window would also have to be scaled. 

Our estimates of EPR are conditioned on the shape of the recurrence distribution and rely 
on the linkage of LTM to plausible values of tMRE (e.g., Figure H-5b) through the 
survivor function. Combinations of LTM with tMRE greater than many multiples of 
LTM are strongly down-weighted for lognormal, BPT, and Weibull functional forms. 
One might ask, what if tMRE really is many multiples of the LTM? In such a case we 
would conclude that the data have impeached the condition on model functional form, 
and that an alternative recurrence model must be sought. Nothing in the method would 
prevent, for example, use of a strongly bi-modal event recurrence model.  

Weighting the range of tMRE values by the corresponding survivor function S(t|LTM) 
addresses a potential concern sometimes raised about the differences in asymptotic 
hazard between the lognormal and BPT models (e.g., Matthews et al., 2002). The 
lognormal model hazard function f(t)/[1-F(t)] declines for t >>LTM, while the BPT 
model asymptotically approaches the Poisson rate. However, when we weight either 
distribution by its survivor function (Figure H-5b), the contribution of tMRE >>LTM 
declines to unimportance. This property of the survivor function is an important part of 
why EPR estimates are relatively insensitive to the choice of recurrence model functional 
form.  

We have not attempted to present EPR calculations for every permutation of knowledge 
that might be developed in a site-specific seismic source characterization. For example, 
we illustrate the consequences of different discrete values of Tmin, with the intention that 
the choices be adopted in a logic tree format with individual weights. This corresponds 
better with the interpretation of Tmin as an epistemic uncertainty, but the method could be 
extended to a continuum estimate of Tmin if data became available to warrant the effort. 
Similarly, in principle, if one knew the magnitude-frequency distribution (MFD) on the 
fault of interest, that information could be used to shape the input DPE profile. In 
practice, MFDs for faults are rarely well known. In addition, the new appreciation of 
connectivity among faults (Field et al., 2013) has cast doubt on the classic understanding 
of fault MFDs. Displacement per event distributions might also be shaped by geologic 
observations. Hecker et al. (2013) report a relatively small range of displacements around 
a mean from repeated observations of displacements at a point. In their data, the observed 
range is typically on the order of ½ to 2× of mean displacement. However, this range is 
not dissimilar to the distributions we have used (e.g., Figure H-5). In any event we could 
not use their formulation without assuming a mean DPE, and any input DPE distribution 
peaked around a mean would effectively constrain the EPR by an unknown input. 
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Our approach to EPR involves a number of steps that might be criticized for want of 
rigorous inputs. Conspicuous opportunities include the a priori weights given to 
individual values of the DPE and CV distributions. Two replies can be offered. First, it is 
clear that some range of displacements per event and CV values must exist; the argument 
must be over how they are distributed. If a distribution is not known, but bounds can be 
suggested, then the least informative strategy is a uniform distribution on the bounds. 
Geologically, however, equal probabilities across the full range of world-wide DPE 
measurements from ruptures in continental crust (e.g., Wesnousky, 2008; Biasi et al., 
2013) would be difficult to defend. At the same time there will be a middle range of DPE 
where being prescriptive about the relative weightings requires more information than is 
available. In this range, the DPE will be flat. This line of reasoning leads to DPE 
distributions like those we have used here. Our CV distributions follow the same logic. 
Figures 10 and 13 are provided in part so that the reader can assess the shifts in CV 
weight that would be needed to materially change the weighted EPR estimates. As with 
the DPE distribution, to depart from a bounded uniform distribution for CV requires 
particular knowledge that the CV of the Hosgri fault is very different from the well-
studied strike-slip faults of California.  

Our second reply is that a recurrence model that includes some sort of time dependence is 
intrinsically more complete than a model that ignores it.. It is entirely possible that the 
Hosgri fault is well past its average recurrence time. A time-independent PSHA would 
not naturally use this information. From a public safety standpoint, a purely time-
independent model would leave out recurrence behavior that is frequently observed on 
active strike-slip faults. For the case of the Hosgri fault, defensible minimum times since 
the MRE of 144 and more likely, 242 years would raise the mean hazard estimate west of 
San Luis Obispo. Uncertainties in the functional form of the recurrence model, the slip 
rate, and elsewhere in the model preclude resolution to three decimal places, but our 
approach gives reasonable estimates to about two. Considering how little information is 
available as inputs, this seems somewhat remarkable. 

Equivalent Poisson ratios assume faults are gradually being loaded and experience 
sudden release in fault rupture. This concept is expressed in the recurrence model 
functional forms that we have used in their estimation. At the western margin of central 
California, seismic and geodetic data give some confidence that processes at work and 
that the functional forms that describe recurrence elsewhere in the state can be applied 
here also. For sites where secular loading cannot be assumed, our EPR estimation method 
can be adapted if other functional forms of recurrence can be proposed. Ultimately, 
however, if nothing useful is known about the recurrence model, no magic in our 
approach to time dependent hazard can redeem the situation.  

H.7.0 CONCLUSIONS 
Modern seismic hazard analyses must include all technically defensible models for 
earthquake recurrence. Many paleoseismic investigations in California and elsewhere 
find some degree of time dependence in ground ruptures. Thus, absent strong evidence to 
the contrary, a time-dependent branch must be considered in evaluating hazard from fault 
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sources in California. In many cases, however, the need to estimate the potential hazard 
consequences from time dependence cannot be met with adequate data for the estimate. 
We present a new approach that yields a useful range of time-dependence estimates 
expressed as factors of the time-independent hazard rate. The method builds from a 
parameter likely to be available in a fault source study —the fault slip rate. The fault slip 
rate can be related to a range of possible earthquake recurrence rates through a bounded 
range of average DPE. A specially designed weighting method focuses probabilities and 
yields EPR estimates by CV. CV weighting informed by paleoseismic results in 
California lead to EPR values and distributions suitable for use in hazard estimation. 

We find mean EPR estimates of 1.09, 1.24, and 1.33 for slip rates of 0.7, 1.7, and 2.7 
mm/yr, respectively, applicable to the Hosgri fault in the near-offshore of central 
California, under the assumption that no significant Hosgri fault earthquake has occurred 
since the founding of the San Luis Obispo mission in 1772. Lower mean EPRs of 1.05, 
1.14, and 1.21, respectively, result if the catalog of ground-rupturing earthquakes is 
considered complete only since the founding of San Luis Obispo around 1870. The 
influence of the open interval since the most recent event decreases as its fraction 
becomes smaller compared to the LTM recurrence interval. This trend is observed in our 
results for a low slip rate fault. With a rate of 0.26 mm/yr patterned on the Los Osos fault, 
the mean EPR is about 1.02. The mean EPR approaches 1.0 as tMRE/LTM approaches 0. 
We also show on the other hand that a paleoseismic constraint on a low slip rate fault can 
be useful for estimating the EPR, even when the MRE date can only be limited to being 
older than some age.  

Time dependence as expressed in the EPR amounts to a direct relative increase in the 
estimate of seismic hazard compared to an analysis that omits it. The potentially 
prominent role of the EPR in seismic hazard estimates will attract attention, and 
undoubtedly future research into the topic. In the meantime, our approach offers a simple 
way to estimate time dependence to at least the first order, and thus provides a useful 
method for including time dependence in site specific PSHAs where tectonic loading is 
responsible for hazard-significant earthquakes. 
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H-1

Conditional Probability Calculation
Illustrated for Exponential and Lognormal

Earthquake Probability Distributions

EXPLANATION
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Conditional Probabilty Ratio
for λ = 1, and Tf = 0.4λ   

Figure H-2
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Displacement Per Event Models
for the Hosgri and Los Osos

or San Luis Bay Faults

Figure H-3
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Two Probability Distributions of
Coefficient of Variation Values

Figure H-4
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Figure H-5

Notes:
- 97.5% of probability is to the left of circles on survivor functions (Panel (b)). The 30-year
  conditional probability (Panel (c)) and 30-year conditional probability ratio (Panel (d)) end at
  respective same points.
- For all plots shown, coefficient of variation is 0.6 and fault slip rate is 1.7 mm/yr.
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Conditional Probability Surface
for the Lognormal Model, CV=0.6,

and Slip Rate 1.7 mm/yr

Figure H-6
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LTM-tMRE Joint Probability Surface
Used to Select Regions in the
Conditional Probability Ratio

Figure H-7

Notes:
- Slip rate = 1.7 mm/yr
- CV = 0.6
- Tmin = 0.  For other Tmin values, weighting to left of Tmin is not used.
- Hosgri fault displacement-per-event distribution is used.
- Joint probability has been divided by its maximum value to clarify relative weights of areas inside contours.
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Sorted Equivalent Poisson Ratio vs.
Corresponding Cumulative Weight

Figure H-8

Note: Red stars mark the 91.5%, 50%, and 8.5% points used for three-point summaries by CV. 
Fraction of total extends to 1.0.
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Conditional Probability Ratios
for Four Values of Historical Constraint Tmin

Figure H-9

Note: Dashed lines are the weighted means corresponding by color and symbol to Tmin cases.
Hosgri displacement-per-event profile is used for all curves.
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H-10

Weighted Mean Equivalent Poisson Ratio
Estimates by Coefficient of Variation for the
Lognormal Model and Three Fault Slip Rates
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Notes:
- Dotted lines are CV-weighted mean values of corresponding solid lines.
- Hosgri displacement-per-event distribution is used for all cases.
- Tmin is 242 years for all fault slip rates shown.
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Three-Point Distribution Equivalent Poisson
Ratio Values for the Lognormal Model

and Three Fault Slip Rates

H-11
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Survivor Functions and Conditional Probability
Ratios Compared for the Lognormal, BPT,

and Weibull Distributions and Five
Coefficient of Variation Values

H-12
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H-13

Per-Coefficient of Variation Equivalent
Poisson Ratio Using the Weibull Recurrence

Distribution for Three Fault Slip Rates
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Notes:
- Dotted lines are CV-weighted mean
  values of corresponding solid lines.
- Hosgri displacement-per-event distribution
  is used for all cases.
- Tmin is 242 years for all fault slip rates shown.
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H-14

Coefficient of Variation Weighted Equivalent
Poisson Ratio Distribution Points for

Lognormal, BPT, and Weibull
Recurrence Distributions

EXPLANATION

Lognormal

BPT

Weibull

Notes:
- Slip rate = 1.7 mm/yr for all recurrence models
- Lognormal points repeated from Figure H-11.
- CV weights as in Figure H-10 and H-13 are applied
  to per-CV EPR estimates at 8.5%, 50%, and 91.5% ,
  and summed.
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San Andreas Fault Equivalent Poisson Ratio
Estimation Comparing a Known

MRE = 1857 to a Bounded MRE ≥ 1857

H-15
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